决定未来的不是技术奇点,而是技术合作

阅读  ·  发布日期 2017-12-16 11:09  ·  admin

人类又已经被机器打败了一次。上个月,抽象棋盘战略游戏围棋的顶尖选手输给了Google的AlphaGo程序。鉴于游戏的复杂性,这标志着机器学习的重大成就。

然而,更重要的事情人们注意得却不多:差不多这时候,一些世界顶级的围棋选手开始在比赛中与AlphaGo组成人机团队,并肩作战。选手们观看AlphaGo以前的比赛,学习到了新的策略,而且他们说跟AlphaGo一起比赛给了他们新的信心。这为我们思考即将到来的人工智能时代提供了一种新的思维。

大多数计算机科学家都表示,关于机器人抢走人类工作的预测是非常夸张的。相比于担心即将到来的技术奇点,更需要思考的是这个问题:各种各样的人和机器共同工作来解决问题,我们称作“多重性”。

多重性可不是科幻概念。机器学习,群体智慧和云计算已经共同成为美国人每天进行工作的基础:搜索文档、过滤垃圾邮件、语言之间的翻译、查找新闻和电影、导航,以及整理照片和视频。

可以谈一谈谷歌的搜索引擎。它运行在一组算法上,这些算法有大量的人类用户输入,而他们在每次点击或跳过链接时都会分享有价值的反馈。垃圾邮件过滤器也是如此。每当有人将邮件标记为垃圾邮件或者更正自动分类的结果时,它有助于微调系统以确定哪些内容是相关的。

亚马逊利用多重性推荐书籍,Netflix用多重性介绍电影,Facebook用多重性组织信息流。数百万人的偏好是通过点击体现出来的,然后一个可以预测用户需求的统计模型就可以用这些数据就进行构建和维护。这其中的关键是把人和产品聚集到一起,在“相似的人有相似的口味”的假设下,算法就可以给人做出推荐。源源不断的人类互动也确保了随着新鲜事物的出现和人们品味的改变,系统可以随之发展。

虽然科学家们仍然不太了解多重性,但他们发现机器多重性的好处越发毋庸置疑。研究人员已经开发了一系列叫做“集体学习”的技术,其中各种专用算法可以协同工作,输出单个结果。其中被称为“随机森林”的一个变体是由加利福尼亚大学伯克利分校的Leo Breiman和Adele Cutler开发的,他们证明了,在数据带有噪声的复杂问题中,一群“决策树”总是比单独一个树要好,只要这些决策树充分多样化。

同样的道理,人类多重性的好处和挑战已经在政治学、经济学和社会学领域得到认可。小组解决问题的实验表明,参与人员的多样性比他们的总智商更重要。也许最令人激动的机器学习领域是深度学习,其中数百万个参数是根据非常多样化的人工标记文本或者图片进行选联调整的。


UC伯克利教授Goldberg:决定未来的不是技术奇点,而是技术合作机器人技术方面也是一样,令人兴奋的进步可以归功于多重性,特别是在自动驾驶中。来自各种人类驾驶员的大量数据可以综合起来展示不同状况下的正确应对方式,并且可以训练多种在分布式硬件上运行的统计机器学习算法。随着人类期待的提高,这些系统需要根据道路、天气和交通状况的变化不断更新和微调。所有这一切都需要人类作为核心进行持续的反馈循环。

与 AI 协作形成的集体智慧使得许多当前最先进、最高效的系统得以应用。如果人们停止提供输入,这些系统将会很快过时或者崩溃。尽管人们已经在人为因素和人机界面方面进行了多年的研究,但是我们还需要更多的研究来找到让各种各样的人和各种各样的机器携手工作的最佳方式。真正重要的问题不在于机器人什么时候能超越人类智慧,而是人类如何用新的方式和它们一起工作。

多重性是协作而不是斗争。世界中的人类劳动者不必为机器人的到来觉得沮丧,这一片新领域其实会让人类变得更强。